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ABSTRACT

KULL is a three dimensional, time dependent radiation hydrodynamics simulation code under
development at Lawrence Livermore National Laboratory. A part of the U.S. Department of
Energy’s Accelerated Strategic Computing Initiative (ASCI), KULL’s purpose is to simulate the
physical processes in Inertial Confinement Fusion (ICF) targets. The National Ignition Facility,
where ICF experiments will be conducted, and ASCI are part of the experimental and computa-
tional components of DOE’s Stockpile Stewardship Program. This paper provides an overview
of ASCI and describes KULL, its hydrodynamic simulation capability and its three methods of
simulating radiative transfer. Particular emphasis is given to the parallelization techniques essen-
tial to obtain the performance required of the Stockpile Stewardship Program and to exploit the
massively parallel processor machines that ASCI is procuring.

1. INTRODUCTION

With the end of underground nuclear testing, the United States must rely solely on non-nuclear
experiments and numerical simulations, together with archival underground nuclear test data, to
certify the continued safety, performance, and reliability of the nation’s nuclear stockpile. The
U.S. Department of Energy (DOE) and its three Defense Programs nuclear weapons national
laboratories—Los Alamos, Lawrence Livermore, and Sandia—have established the science-based
Stockpile Stewardship Program to meet this challenge. Large experimental facilities, such as the



National Ignition Facility (NIF) currently under construction at Lawrence Livermore, allow sci-
entists to study physics in physical regimes approximating the conditions inside a nuclear explo-
sion. The Accelerated Strategic Computing Initiative, or ASCI, provides virtual testing and pro-
totyping capabilities based on advanced simulation codes and high-performance computing.

When completed, the football-field-sized NIF (http://www-lasers.lInl.gov/lasers/nif.html) will
focus 192 laser beams on a mm-sized target ablating the outer surface of a tiny pellet containing
deuterium and tritium. The ablation compresses the pellet which results in large increases in
pressure, density, and temperature, conditions similar to those in an exploding nuclear weapon or
the interior of a star. With sufficiently high temperatures, the deuterium and tritium nuclei can
overcome their coulomb repulsion causing a fusion reaction that releases 17.6 MeV. Ignition, the
technical goal of NIF and the Inertial Confinement Fusion (ICF) community, is achieved when
the heating resulting from fusion is sufficient to sustain the continuing chain reaction.

The goal of ASCI is to provide both the software, in the form of the operating environment and
the simulation codes, and the hardware, in the form of massively parallel processor supercom-
puters, necessary for predicting the processes occurring in ICF targets and nuclear weapons.

The hardware component of ASCI represents a partnership between DOE and the computing
industry. The first supercomputers were developed in the 1960s for weapon applications as part
of such a partnership. This relationship continued for several decades until the late 1980s and
early 1990s when the weapons laboratories influence on high performance computing develop-
ment waned as their needs decreased. Meanwhile, the computer industry shifted their focus to the
business market where raw performance, especially on scientific applications, was less important
than the price-performance ratio. With stockpile stewardship’s reliance now on simulation, ASCI
can encourage the development of the highest performing platforms by both partnering in devel-
opment as well as by providing a highly visible market for the machines once developed. ASCI
accelerates a computer company’s normal development cycle by demanding performance
beyond the requirements of conventional customers. The company benefits by developing mar-
ket products that perform above that which would have been available if it were not for ASCI-
partnered development. This development strategy is possible because ASCI partners use com-
modity, off-the-shelf hardware, specifically micro-processors with unique interconnects, rather
than developing completely specialized, one-of-a-kind machines.

Massively parallel processor architectures are the only way to achieve the performance
demanded by ASCI physics simulation codes. To date, three such systems have been delivered,
one to each of the Defense Programs weapons laboratories. Intel delivered the first, ASCI Red
(http://www.sandia.gov/ASCI/Red/main.html) to Sandia National Laboratory in Albuguerque,
NM, in late 1996. The full machine, completed in June 1997 (see Figure 1), consists of 4640 dual
Pentium Pro processor compute nodes with nearly 600 Gbytes of memory and an aggregate peak
performance of 1.3 TeraOps (10 floating point operations per second). In early 1997, Silicon
Graphics and IBM made the initial deliveries of the next generation ASCI machines to Los
Alamos and Lawrence Livermore, respectively. By late 1998, the final configurations were in
place and delivered aggregate peak performances of over 3 TeraOps each and measured sus-
tained performance of over 1 TeraOps. Los Alamos’s Blue Mountain machine
(http://www.lanl.gov/asci/bluemtn/bluemtn.html and
http://lib-www.lanl.gov/la-pubs/00418752.pdf) consists of 48 Silicon Graphics Origin 2000
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shared memory multi-processor nodes (see Figure 2). Each node has 128 250-MHz processors
for a total of 6144 processors and 1.5 Terabytes of memory. Lawrence Livermore’s Blue Pacific
machine (http://www.lInl.gov/asci/platforms/bluepac) consists of 1464 shared memory multi-
processors, each node with four 332-MHz IBM PowerPC 604e processors (see Figure 3). The
machine has a total of 5856 processors and 2.5 Terabytes of memory.

The next step toward the ASCI’s eventual goal of a 100 TeraOps system by 2004 is the Option
White machine being manufactured by IBM and to be delivered in stages to Lawrence Livermore
throughout 2000. Option White will have of a peak aggregate performance of 10 TeraOps over
512 shared memory nodes, each consisting of 16 processors.

The simulation codes that make up the bulk of the software component of ASCI include classi-
fied nuclear performance codes that can predict the details of an exploding nuclear weapon, un-
classified materials modeling codes that employ molecular dynamics to study the long-term deg-
radation of material under the influence of low-level radiation, and unclassified multi-physics
codes that simulate the processes within an ICF pellet. KULL, the subject of this paper, is one
such ICF modeling code used by scientists to design experiments for NIF and to study physics in
regimes similar to that seen in nuclear explosions.

2. KULL OVERVIEW

KULL, a simulation code that has been under development by an interdisciplinary team of sci-
entists, engineers and computer scientists at Lawrence Livermore for the last several years, can
model the time-dependent processes occurring in an ICF pellet. It must model the fluid motion
within the pellet as it undergoes tremendous increases in temperature, pressure, and density; it
must model the transport of x-ray radiation emitted by high-temperature material; it must model
the release of energy and depletion of reactants resulting from the fusion process.

2.1. PHYSICS SIMULATION

Fluid motion is simulated through the numerical solution of the compressible hydrodynamics
equations. The solution algorithm must be able to accurately model the effect of large density
gradients, shocks, and various kinds of instabilities. KULL uses the Arbitrary Lagrange-Eulerian
(ALE) approach for this component. Section 3 describes KULL’s hydrodynamics package in
more detail.

Hot matter radiates x-rays that propagate throughout the system causing a redistribution of
energy as the photons are absorbed and heat up other regions. These regions, in turn, emit more
x-rays. The absorption cross section or opacity of material is strongly dependent on its composi-
tion and temperature, making x-ray radiation transport a highly non-linear process. Users of
KULL may choose one of three methods of modeling radiation flow: flux-limited diffusion,
deterministic discrete ordinate transport, and a specialized Monte Carlo method known as
Implicit Monte Carlo. Details of the three methods are described in subsequent sections.

KULL can also simulate the fusion process. Given a composition, density, and temperature,
KULL’s thermonuclear burn package can calculate the reaction rate density, rate of energy
release, the consumption of reactants, and production of reaction products.
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In addition to its suite of physics simulation packages, KULL has several unique features com-
pared to other, earlier ICF simulation codes. Most importantly, KULL models an experiment in
full three dimensions, where earlier codes exploit approximate axial symmetry and model only
two dimensions. KULL’s mesh or zoning scheme also differs from most other codes of this type.
Instead of an ordered arrangement of a few types of polyhedra, typically degenerate hexahedra
(the so-called finite element zoo), KULL supports an unstructured mesh of fully arbitrarily con-
nected zones of fully arbitrary polyhedra. While this severely complicates the numerical solution
algorithms, this generality allows nearly infinite flexibility in a user’s choice of zoning, enabling
more accurate geometric representation of experiments. It also helps transfer the burden of zon-
ing a problem from the user onto the mesh generation software. Figure 4 shows an example of
such a grid.

2.2. COMPUTER SCIENCE FEATURES

KULL’s choice of the object-oriented C++ programming language also represents an advance in
the state of the art of physics simulation code development. KULL makes heavy use of the lan-
guage’s templating ability to allow for efficient polymorphism, one of the advantages of object
oriented design. Python, an object-oriented scripting language, allows KULL developers to rap-
idly prototype software changes and provides a means for users to “steer” their simulations as
they develop. Although the core infrastructure of KULL and many of its physics packages are
written in C++, some package authors have chosen Fortran90 instead.

As mentioned above, only by exploiting massively parallel computer architectures can an ASCI
code hope to meet the demands of predictive simulation. Some of these simulations may require
hundreds of millions of zones. KULL’s algorithms have been designed to run efficiently on these
platforms. KULL uses a strategy of mixed parallelization techniques. On ASCI Blue Pacific,
KULL’s primary target machine, message passing through the Message Passing Interface (MPI)*
is used to communicate among the four-processor SMP compute nodes. Within an SMP node
either MPI or, for more efficient parallel performance, threading through OpenMP? directives
provide parallelization.

3. HYDRODYNAMICS

Traditionally, computational hydrodynamics methods have fallen into two camps. The first,
known as Eulerian methods, hold the mesh of zones stationary and fluid flows from one zone to
another through zone faces via advection. Eulerian methods are extremely robust, capable of
running under severe flow conditions. These methods are usually implemented on a regular,
structured mesh that permits very efficient solution schemes. Because the zones do not move,
zone tangling in flows of high vorticity, a problem with other schemes, is impossible by defini-
tion. Eulerian methods can be subject to inaccuracies due to numerical diffusion as interfaces
between materials flow across zones unless sophisticated interface tracking techniques are
employed. Finally, if no adaptive techniques are used, the zone resolution specified at the begin-
ning of a simulation is constant over time. This may result in poor resolution of details in a con-
verging geometry such as an imploding ICF pellet.



At the other end of the scale are Lagrangian methods. Here, zones flow with the fluid and no
fluid crosses zone faces. Interfaces remain intact as they travel with zones. Again, because the
zones travel with the fluid, highly resolved regions will retain their high resolution throughout
the flow evolution. Unfortunately, in flow fields with high vorticity, the mesh may tangle result-
ing in zones that are contorted to such a degree that their volumes are negative as they are turned
inside out.

Over the last decade or so, another method has emerged that smoothly spans these two extremes
offering the benefits of both: the Arbitrary Lagrange-Eulerian (ALE) method. In ALE, the solu-
tion algorithm can vary from pure Eulerian to pure Lagrangian through the adjustment of a
parameter that may be set by the user or set automatically according to some established criteria
that may vary throughout the geometry of the simulation. An ALE single solution step consists
of two parts. First, in the Lagrange step, the mesh travels with the fluid as determined by the
equations of momentum and energy conservation and the length of the time step. Then, in the
Eulerian remap step, the mesh is moved some fraction of the way back to its original position. As
the mesh moves through the fluid, fluid advects through the faces of the mesh. The fraction is
determined by the adjustable parameter noted above. The mesh tangling that plagues simple
Lagrangian schemes can be avoided by advecting more in regimes of high vorticity. The diffi-
culty of tracking interfaces seen in simple Eulerian schemes can be eliminated by avoiding the
advection step near material interfaces. In practice, however, ALE schemes employ interface
tracking techniques to allow the interface to traverse the mesh without undue numerical disper-
sion.

KULL currently implements both Lagrangian and ALE hydrodynamics, with plans in the future
of implementing more exotic techniques such as Free Lagrange. Due to the complexities of the
fluid flow encountered in ICF calculations, techniques must be robust to turbulent flows. Figure
5 shows such a complex flow simulated with KULL’s ALE. Both the Lagrange and ALE remap
steps are second-order accurate in space and time, where the Lagrange cycle solves the standard
conservation equations for mass, momentum and energy:
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KULL’s ALE mode consists of an arbitrary number of Lagrange steps followed by an advective
remap step to relax the mesh. KULL allows a number of choices for how the mesh should be
moved during the remap phase, ranging from nearly Lagrangian (where the mesh closely follows
the fluid) to purely Eulerian (where the mesh is remapped to its original configuration after every
Lagrange step). The user is free to mix different mesh motion algorithms in different regions of a
problem. The ALE remap for any quantity g (which could be the mass, momentum, or energy or
any other guantity) can be expressed as a differential over a pseudo-time T,



where vg represents the motion of the mesh (grid).

The most novel aspect of the current hydrodynamic schemes in KULL is that they are designed
to work well on unstructured meshes. As an example of this capability, Figure 6 shows an ICF
implosion simulation run on a mesh generated using a VVoronoi cell structure (the dual mesh of a
Delauny triangulated mesh).

4. RADIATION TRANSPORT

The equations for thermal radiative transfer describe the transport, absorption, scattering, and
emission of x-rays within a physical material. As photons propagate, they are both absorbed and
emitted by the material altering the temperature of the material, which in turn changes the prop-
erties of the material. These changes in the material properties subsequently alter the rate and the
energy spectrum of emission, as well as the photon mean-free-path. These physical processes are
modeled with the Boltzmann transport equation for photons and an energy balance equation for
the material. The photon transport equation is reminiscent of the neutron transport equation but
with one significant difference: the emission source on the right side is proportional to the
absorption cross section and the Planck function,

1 % O a(f, E,7(t), p(t))gl(r,Q,E, {) = a(r,E, 7(e), p(t))B(r, E, T(t)).

Here, for simplicity there is no scattering and no external source. The Planck function is written
3 hv T
2hv O T

B(v.T)= . —15

where
E=hv.

The material energy balance equation shows that the rate of change in material energy density,
Um, IS the difference of the rate of energy absorbed from the radiation field and the rate of energy
emitted by the material back into the radiation field:

dum(r, Td(tt),p(t)) =EdE0(r’ E, T(t), p(t)) @J;dgl(r,Q, E, t) - B(r, E, T(l‘))é



The fundamental unknowns are the radiation intensity | and the material temperature T in a seven
dimensional phase space (three in position r, two in direction Q, one in energy E, and one in
time t). These equations exhibit strong nonlinear coupling through the emission terms and the
material opacity or cross section. The material opacity itself is a very strong function of tem-
perature, photon energy, and atomic number and can range over ten orders of magnitude in a
single calculation. Fine resolution in space, energy and direction is required to adequately repre-
sent the photon distribution in time. A thorough discussion of the above equations and the
physics they represent may be found in reference 3.

5. DIFFUSION RADIATION TRANSFER

Both the unstructured grid capability of KULL and the strong coupling between the matter tem-
perature and the radiation field pose unique challenges to simulating these processes. A method
based on the flux-limited, multi-group diffusion approximation to the angular-dependent trans-
port equation provides users with the capability of performing more efficient, albeit less accu-
rate, simulations than possible with full-fledged transport methods.

A point centered diffusion differencing scheme* has been developed for three dimensional un-
structured meshes that has the following attractive properties: 1) equivalence with the standard
seven-point point centered scheme on an orthogonal mesh; 2) preservation of the homogeneous
linear solution; 3) second-order accuracy; 4) strict conservation within the control volume sur-
rounding each point; and 5) convergence to the exact result as the mesh is refined, regardless of
the smoothness of the mesh. A potential disadvantage of the method is that the diffusion matrix
IS asymmetric, in general.

The scheme is based on dividing each polyhedral zone into subzone volumes called wedges.
Each vertex has twice as many wedges as it has edges emanating from it. Six wedges are associ-
ated with each corner of a hexahedral zone. A wedge is a tetrahedron with vertices at a zone
center z, the point defining the corner p, a face center f, and an edge center e as shown in Figure
8. Burton® originally suggested the concept of tetrahedral subzone volumes in his hydrodynamics
work. Particle balance is enforced by integrating the diffusion equation,

& ¥ oF Q,

over the control volume formed by the union of wedges surrounding a point. Here, Q is an arbi-
trary source, the intensity integrated over all angle is the flux,

dqr. E,t):J’dQ/(r,Q,E,t),

and the first moment of the intensity is the current,

J(r, E,t)zIdQQl(r,Q,E,t).

Area-averaged currents are eliminated in favor of fluxes through Fick’s law,
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The resulting gradients of flux can be expressed in terms of fluxes at the wedge vertices. Then,
by imposing the requirement of continuity of the normal component of current across wedge
faces and defining zone-center fluxes as the inverse-length-weighted average of extrapolations of
point fluxes, a matrix results where each point is connected to every point associated with the
zones surrounding that point. The elimination of zone-, face- and edge-centered fluxes in favor
of point-centered fluxes on volume elements that are not right hexehedra can result in the diffu-
sion matrix being asymmentric.

5.1.  PARALLEL DIFFUSION MATRIX SOLUTION STRATEGY

The possibility of an asymmetric matrix eliminates from consideration the use of some conven-
tional matrix solvers. KULL's diffusion package has implemented in it two standard linear
Krylov subspace (iterative) solver libraries for matrix solution: PETSc’and HYPRE'. Because
the underlying matrix is asymmetric, KULL uses the GMRES (Generalized Minimum Residual)
method that accommodates asymmetric matrices. An excellent discussion of this and other
Krylov subspace methods may be found in reference 8. To accelerate convergence of the matrix
solution the linear solver libraries provide several options for preconditioning. We have found
that the algebraic multigrid® (AMG) preconditioner available in HYPRE is robust for a wide
range of problems and scales well to many (thousands) of processors. The block-Jacobi precon-
ditioner available in PETSc also works well for a large class of problems; however, it does not
scale as well as AMG.

PETSc and HYPRE utilize spatial domain decomposition to exploit parallel processor hardware.
Each domain is handled by separate processes. The solution of the diffusion matrix is found by
iterating through a subspace of limited dimensionality. This involves communication at surfaces
of domains. The matrix equation is transformed in a preconditioning step, essentially local to the
subdomain, in order to obtain good convergence properties for the global solution. Convergence
testing and iteration control are performed using simple and efficient global reduction operations.

5.2.  COUPLED EQUATION SOLUTION METHOD

The solution of the diffusion matrix equation represents only one part of the total solution proc-
ess. The coupling of the material energy balance equation with the diffusion equation through the
emission and absorption terms must be considered. A brief discussion of the solution procedure
follows. The scheme employs a fully implicit time discretization with the exception that the
opacities and specific heats are evaluated at the beginning-of-timestep temperatures. To obtain
an implicit Planckian, we use a Newton-Raphson iteration (with iteration index k) based on the
following first order expansion:

B(T..0) = B(T) + (T T

Tk

Substitution of this into the discretized form of the transport and energy balance equations leads
to a linear steady-state multigroup problem to be solved for each Newton-Raphson iteration on
each time step. The flowchart in Figure 7 displays the overall iteration strategy for each time



step. Starting with a beginning of time step temperature and material properties, we evaluate the
emission source and then solve for the intensity in each energy group over the entire spatial
domain. This is followed by an update of the material temperature and finally a convergence test
on the temperature and the integrated intensity. If convergence is satisfied, we advance to the
next time step. Otherwise, we continue the temperature iteration loop.

6. DISCRETE ORDINATE RADIATION TRANSPORT

The discrete ordinate, or Sy, method of solving the full angular-dependent radiation transport
equation experiences the same challenges as the diffusion approximation, namely an unstruc-
tured mesh and strong matter-radiation coupling, with the additional calculational complexity of
resolving the angular dimensions of phase space.

The discretization scheme used in KULL’s Sy module TETON is upstream corner-balance in
space, multigroup in energy, discrete ordinate in angle, and fully implicit in time. The upstream
corner-balance scheme employs a means of dividing the polyhedral zones into subvolume cells
similar to that used by the diffusion method described in the previous section. Details of the spa-
tial discretization have been given elsewhere' and will not be described here. The system is
solved using the grey transport acceleration method (GTA)™ except that an S, quadrature is
always used for acceleration. The resulting one group and S, problem is solved using transport
synthetic acceleration (TSA)."

The coupled system of matter energy and radiation equations is solved in a manner similar to the
one used for diffusion. But, because a packaged parallel matrix solver is inappropriate for the
transport solution, parallelization is explicitly considered in the construction of the transport
solver. On the highest level, the spatial mesh is divided into multiple sub-domains, one for each
compute node on ASCI Blue Pacific. With the exception of the means of solving for intensities,
the spatial domain decomposition and the transport iteration strategy*® shown in Figure 9, is the
same as that for diffusion. After finding the intensities in each direction and energy group on a
node’s spatial domain, the boundary intensities are communicated between nodes. A node sends
its exiting intensities to and receives incoming intensities from nodes containing neighboring
domains. This is followed by a “local” acceleration step where there is no internode communica-
tion. Testing for global convergence of temperatures and radiation intensities requires internode
communication.

6.1. PARALLEL SOLUTION STRATEGY

While it is possible to distribute the six dimensional calculation over compute nodes via decom-
position in a variety of combinations of space, angle, and energy, spatial domain decomposition
best fulfils the following criteria:

* It must optimize both the high-order problem (multigroup, Sy) and the low-order
problem (one group, S;) used for iterative acceleration.

* It must scale to problems with billions of unknowns using thousands of processors.

* It must handle multigroup physics constraints (e.g., group to group scattering).



» Itshould try to preserve single processor convergence rates.

* The communication costs should be low and not increase substantially with the num-
ber of domains.

* It should minimize total computation time and storage.
» The resulting computation on a single node should be as cache efficient as possible.

Energy decomposition fails because the acceleration step cannot be decomposed and because it
requires that each node hold the entire mesh, thus severely limiting the problem size. Decompo-
sition in angle suffers these same limitations, and also requires frequent communication points.

On Blue Pacific, each compute node contains four SMP processors. To fully extract the power of
such a machine, efficient use at the SMP level must also be pursued. Two distinct, but intimately
connected aspects must be considered: using multiple threads and optimizing cache performance.

The criteria for developing a SMP algorithm using threads are similar to the ones chosen for
deciding how to spatially distribute the problem. In the case of threads the primary concern is
developing an algorithm that automatically handles both the high-order problem (multigroup, Sn)
as well as the low-order acceleration step (one group, Sz). Threading over angles satisfies this
constraint, while threading over blocks of energy groups does not.

Threading is accomplished using a single OpenMP directive (“parallel do””) on the loop over
angles. This loop encompasses the source calculation, the sweep through the spatial grid and, as
we will see below, the loop over energy groups. Both the solutions for the intensities and the
acceleration calculation use this angle loop. The goal is to put as much work as possible in the
threaded loop and our experience has shown that this is critically important. (An initial attempt
at loop level directives provided no more than a speedup of 1.5 out of 4 processors.)

6.2. CACHE OPTIMIZATION

Due to the fact that unstructured meshes have arbitrary connectivity between grid elements, there
is no simple relationship that maps from one subzone to its neighbors. In order to allow for com-
pletely arbitrary zone shapes and topologies, it is necessary to compute an ordered list of sub-
zones for each discrete ordinate direction. As a result, indirect memory references are used
throughout the lowest level of the algorithm, where the grid is “swept” for each direction. Indi-
rect memory references are essentially random walks through memory and can result in a cache
miss for every memory reference and almost no reuse of the data that resides in cache. Figure 10
shows the cumulative effect of several techniques used to improve this situation. In general, the
improvements described below reduced the number of data cache misses and thus resulted in
shorter run times by providing a larger fraction of “useful’” cycles.

All runs were made on a DEC Alpha, gathering the CPU time, the percent of “useful” cycles and
the number of cache misses for a benchmark problem run with stand-alone versions of KULL’s
TETON package. The first data point on the left of each curve was obtained by running the vec-
tor version of TETON with source optimized for the Cray YMP. This serial benchmark ran in 3.7
minutes on a Cray YMP and 23.2 minutes on a DEC Alpha. After making the code modifications
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identified in Figure 10 and described below, the run time for the threaded code was reduced to
0.9 minutes (four CPUs) on the DEC Alpha and 1.5 minutes on an Blue Pacific computing node
(four 604e CPUs).

The most dramatic improvement resulted from converting from a vector version of the code to a
scalar version. Arrays were replaced with scalars in arithmetic operations; small vector loops
were “fused” into larger single scalar loops.

Another large improvement was gained by storing the connectivity information such that one
array reference can bring into cache all of the integer data that is required to calculate a single
intensity (e.g., list of neighboring subzones, zone index, face index, etc.). The same grouping of
data can be done for the real arrays (e.g., incident intensities and sources).

A third remedy is to “prefetch” the data that is required to calculate an intensity. Before entering
the loop over subzones, TETON loads all of the data required to compute the first intensity. Once
inside the loop, the intensity for subzone i is computed while the data required for the intensity at
i+1 are loaded. In this fashion, stalls resulting from slow memory access are amortized over con-
current calculation. More dramatic gains can be achieved from maximizing the reuse of data that
is already loaded, for example all of the geometry information. One way to do this is by collect-
ing or “batching” all photon energy groups that have the same set of angles and transporting
them together.

6.3. PARALLEL PERFORMANCE

Combining the two techniques (spatial decomposition over nodes via MPI message passing and
threading over angle on the processors on each node using OpenMP) results in a scheme that
maximizes the performance of Blue Pacific. It should be noted that the calculations still take a
long time to complete due to the huge number of unknowns to solve. Without these algorithm
developments and machines like Blue Pacific, calculations required by the Stockpile Stewardship
Program would be impossible.

Figure 11 shows run time as a function of the number of processors (the number of subdomains
is one-fourth the number of processors) for four fixed size problems. The problems range in size
from a single group, S4 calculation on 3.2x10° zones (~6.1x10" unknowns) to an eight group, Se
calculation on 1.024x10° zones (~3.1x10° unknowns). All four runs show good scaling, having a
parallel efficiency of about 90% for the largest processor count compared to the run time per
CPU for the smallest processor count. (The problems require too much memory to be run on
fewer processors than the minimums shown in Figure 11.)

Figure 12 compares constant workload per processor runs made with MPI processes alone and
with the combination of MPI and threads (4 threads per node). The number of subdomains
equals the number of processors with MP1 alone and equals one-fourth the number of processors
with MPI and threads. The fundamental size problem given to a single processor is an eight
energy group and Sg (48 angles) calculation on 2000 zones. As the total number of CPUs is
increased, two effects are seen in the MPI only curves. The upper curve, representing 4 MPI
processes per node, shows increased CPU time at 128 CPUs due to the “saturation” of the com-
munication sub-system. There is a similar rise in the middle curve, representing 1 MPI process
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per node. At 256 CPUs, the top curve suffers from an additional cost due to the contention
among the 4 MPI processes per node for the single memory bus. The effect of “stressed” com-
munications and contention for memory seem to synergize in the upper curve at 256 CPUs. This
is not apparent on the middle curve since it has only 1 MPI process accessing memory. The first
effect is not present at all in the bottom curve, representing 1 MPI process with 4 threads, until
the 512 CPUs are used, but even then the “strain” is only marginally significant.

7. IMPLICIT MONTE CARLO METHOD OF RADIATION TRANSPORT

KULL’s third option for determining the radiation field is through a type of Monte Carlo method
known as Implicit Monte Carlo* (IMC). Unless extremely small time steps are taken, conven-
tional analog Monte Carlo fails and goes unstable for this type of simulation again due to the
close coupling of the radiation and matter energy density through the absorption and emission
terms of the respective equations. To illustrate this problem, consider a two region geometry: one
cold, the other hot. The hot region emits x-ray photons that are absorbed in the cold region
causing its temperature to increase. As the cold region gets hotter, it in turn emits photons. This
occurs nearly instantaneously, the rate being limited only by the speed of light and the distance
separating the two regions. In a conventional Monte Carlo simulation, the emission from the
recently heated region cannot occur until the time step after the absorption occurs. If tempera-
tures change too much from one time step to the next, the simulation goes unstable. Reducing the
time step can eliminate this stability problem, but at a cost of making the simulation too expen-
sive. The alternate, innovative solution employed by IMC is to estimate the emission rate at the
future matter temperature. The algorithm becomes implicit in temperature.

7.1. DERIVATION OF IMC

Demonstrating how to make the algorithm implicit is simplified by considering the grey, one
dimensional formulation of the photon transport equation, where the energy dependence has
been eliminated by integrating over all energy:

10l ol 1 4
——+uU—+0ol =—coaTl".
c ot ox 2

The Planckian emission term in both the transport equation and the material energy density
equation,

dum — ! _ 4D
W —0_%_1 Idl,l acT" -,

shows the familiar T* dependence after integrating over energy. Defining, for convenience, the
scaled source

B(T)=ar*

and B8

12



0B _ 0B oT 4aT3
ou dTo"u b

m

B=

and applying the chain rule to the matter energy balance equation results in the following expres-
sion for the scaled source:

ot B Bor

By integrating this equation over the time step At = t™" —t" and defining a time-centered value
of B defined as

B =aB™ +(1-a)B",
the scaled source equation becomes
B"-(1-a)B"-aB" =aEa‘At(J_llMdp —CBV)

after eliminating the end-of-timestep value B™. Note that the superscripts A and ydenote a time
centering and the bars over Sand o denote their time average values.

Solving for the time-centered value of B and dropping the overbars yields

B = apBoit J. 1 B
1+ afBcoit 1 + afcolt

Substituting this back into the transport equation and replacing the time centered intensity with
its instantaneous value results in the implicit form of the transport equation,

19 al 1 .
——+u—+al ——a Id + ca B
ca M f 1

where effective scattering and absorption cross sections are defined

o = afcolt
1+ afcoit
o = _
1+ afcoit

Replacing the total cross section with the effective absorption cross section similarly modifies
the material energy density equation,

d'Im — eff ! _ nd
dt =o, E[_lldu cB

H]
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Note how the effective scattering and absorption cross sections behave with varying a and At. As
a goes to zero, i.e., the method becomes fully explicit, the effective scattering cross section van-
ishes and the effective absorption cross section goes to the total cross section. IMC reverts to
conventional Monte Carlo. The same is true as the length of the time step shrinks to zero. As the
length of the time step goes to infinity, the effective absorption cross section vanishes, the effec-
tive scattering cross section goes to the total cross section, and implicit transport equation reverts
to the transport equation under conditions of radiative equilibrium:

19 a 1
1A 2 o =tof 1d
ca Hax S

In the IMC simulation procedure, a fraction of the absorption in the current step and emission in
the next step has been replaced by an effective scattering in the current time step. The fraction is
dictated by the effective scattering cross section which is determined by a number of terms

including two that can be controlled by the user: the fraction of “implicitness”, a, and the time
step, At.

7.2. PARALLEL SOLUTION STRATEGY

Currently, KULL employs two different schemes for parallelizing IMC. For geometries small
enough to fit on a single processor, a technique known as complete geometry replication is used.
Instead of decomposing the problem over space, as is done for hydrodynamics and discrete ordi-
nates, parallelization is achieved by decomposing over particles. The geometry is replicated and
the IMC step is performed independently on each processor. Care must be taken to ensure that
the random number sequences on each processor are indeed independent. After each processor
completes its simulation the results are summed together to obtain a result with statistical accu-
racy consistent with the total number of particles run.

For ASCI-scale problems this technique is infeasible because the geometry is too large to fit on
each processor. Instead, spatial domain decomposition is used where each spatial subdomain is
assigned to a single processor. As particles leave a subdomain during the IMC simulation, they
are batched into messages and sent to the processors containing the neighboring subdomains.
There the particles continue their transport.

We hope to explore a hybrid of these two techniques in the future. The geometry could be split
into subdomains just small enough to fit on individual processors. The subdomains could then be
replicated over processors. These processors would solve independent Monte Carlo simulations
on the subdomains exploiting decomposition over particles. The number of processors assigned
to each subdomain would be controlled by the amount of time required to complete each sub-
domain’s work. Varying the number of processors per subdomain would allow the work to be
balanced across processors.

7.3. PARALLEL PERFORMANCE

The geometry replication option shows excellent parallel efficiencies as expected. Figure 13
shows the relative run time for a problem where the number of particles in the simulation
increases with the number of processors. Performance improves with more particles per proc-
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essor because the fraction of time spent in communication decreases as the time spent doing
computation increases.

The domain decomposed IMC exhibits poorer parallel performance for the sample test problem
of a slab of material with a temperature source at one end. Figure 14 shows the execution times
decreasing as a function of the number of processors until 256 processors. In this plot the total
number of particles for a particular curve is held constant. As the number of processors increases
each spatial domain becomes smaller. The departure from optimal performance is due to two
factors. First, the communication overhead for the domain decomposition cases is significantly
greater than for geometry replication because communication between nodes is necessary
throughout each time step as particles move from domain to domain. For the geometry replica-
tion case, communication occurs only at the beginning and end of the time step. Second and
probably the most important contribution to the degradation in performance, the workload
between processors is out of balance for this problem. Because particles are concentrated at the
hot end of the slab and subdomains are distributed uniformly along the slab, processors assigned
to subdomains closer to the hot end do much more work than processors assigned to regions at
the other end.

CONCLUSIONS

KULL’s three dimensional, time dependent hydrodynamics and radiative transfer methods have
been designed to work well on unstructured meshes of arbitrarily connected zones of polyhedra.
The hydrodynamics is a flexible ALE method which is sufficiently robust to handle the turbulent
flows encountered in ICF experiments. KULL can simulate the transfer of radiation resulting
from the emission of x-rays by hot matter through any one of three techniques: diffusion for
quick, less accurate simulations and discrete ordinates and Implicit Monte Carlo when full-
fledged, angular dependent transport solutions are required, albeit at a computational cost.
Although not presented here, integrated radiation hydrodynamics capability is just becoming
available and will represent a valuable computational tool to the ICF community and the Stock-
pile Stewardship Program.
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Figure 1. ASCI Red at Sandia National Laboratories.

Figure 2. ASCI Blue Mountain at Los Alamos National Laboratory.
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Figure 4. KULL mesh showing arbitrary connectivity near center.

Figure 5 A KULL ALE simulation of Richtmyer-Meshkov instability in imploding ICF system.
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Figure 7. Flowchart of the radiative transfer iteration.
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25 3.0E+06
o —&—CPU Time
— —6—"% Useful Cycles 1
520 N\ | ------ # of Cache Misses 2.5E+06
T 2.0E+06 ,
15 =
g e + 1.5E+06
10 -
+ 1.0E+06
Threading
— Improved R )
B 5 Data Layout - 1 50E+05
"Batching"
0 ‘ ‘ 0.0E+00

Time (months)
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Figure 12. Scaling results for constant work per processor for discrete ordinate transport.
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